
Advanced Cryptography Chapter 5: SSL/TLS

Dr. Mohammed A. Hussain

1

Chapter 5: SSL / TLS

TLS Main Objective

• Secure shared public key (certificate X.509)

• Secure shared secret key

• Secure transferring data

556 CHAPTER 17 / TRANSPORT-LEVEL SECURITY

Handshake Protocol

The most complex part of TLS is the Handshake Protocol. This protocol allows

the server and client to authenticate each other and to negotiate an encryption and

MAC algorithm and cryptographic keys to be used to protect data sent in a TLS

record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client

and server. All of these have the format shown in Figure 17.5c . Each message has

three fields:

 ■ Type (1 byte): Indicates one of 10 messages. Table 17.2 lists the defined mes-

sage types.

 ■ Length (3 bytes): The length of the message in bytes.

 ■ Content (# 0 bytes): The parameters associated with this message; these are

listed in Table 17.2.

Figure 17.6 shows the initial exchange needed to establish a logical connection

between client and server. The exchange can be viewed as having four phases.

PHASE 1. ESTABLISH SECURITY CAPABILITIES Phase 1 initiates a logical connection

and establishes the security capabilities that will be associated with it. The exchange

is initiated by the client, which sends a client_hello message with the following

parameters:

 ■ Version: The highest TLS version understood by the client.

 ■ Random: A client-generated random structure consisting of a 32-bit time-

stamp and 28 bytes generated by a secure random number generator. These

values serve as nonces and are used during key exchange to prevent replay

attacks.

 ■ Session ID: A variable-length session identifier. A nonzero value indicates that

the client wishes to update the parameters of an existing connection or to cre-

ate a new connection on this session. A zero value indicates that the client

wishes to establish a new connection on a new session.

Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Table 17.2 TLS Handshake Protocol Message Types

17.2 / TRANSPORT LAYER SECURITY 557

 ■ CipherSuite: This is a list that contains the combinations of cryptographic

algorithms supported by the client, in decreasing order of preference. Each

element of the list (each cipher suite) defines both a key exchange algorithm

and a CipherSpec; these are discussed subsequently.

 ■ Compression Method: This is a list of the compression methods the client

supports.

After sending the client_hello message, the client waits for the server_
hello message, which contains the same parameters as the client_hello

Figure 17.6 Handshake Protocol Action

Client Server

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

finished

change_cipher_spec

finished

change_cipher_spec

certificate_verify

client_key_exchange

certificate

server_hello_done
certificate_request

server_key_exchange

certificate

server_hello

client_hello
T

im
e

558 CHAPTER 17 / TRANSPORT-LEVEL SECURITY

 message. For the server_hello message, the following conventions apply. The

Version field contains the lowest of the version suggested by the client and the highest

supported by the server. The Random field is generated by the server and is indepen-

dent of the client’s Random field. If the SessionID field of the client was nonzero, the

same value is used by the server; otherwise the server’s SessionID field contains the

value for a new session. The CipherSuite field contains the single cipher suite selected

by the server from those proposed by the client. The Compression field contains the

compression method selected by the server from those proposed by the client.

The first element of the Ciphersuite parameter is the key exchange method

(i.e., the means by which the cryptographic keys for conventional encryption and

MAC are exchanged). The following key exchange methods are supported.

 ■ RSA: The secret key is encrypted with the receiver’s RSA public key. A public-

key certificate for the receiver’s key must be made available.

 ■ Fixed Diffie–Hellman: This is a Diffie–Hellman key exchange in which the

server’s certificate contains the Diffie–Hellman public parameters signed by

the certificate authority (CA). That is, the public-key certificate contains the

Diffie–Hellman public-key parameters. The client provides its Diffie–Hellman

public-key parameters either in a certificate, if client authentication is re-

quired, or in a key exchange message. This method results in a fixed secret key

between two peers based on the Diffie–Hellman calculation using the fixed

public keys.

 ■ Ephemeral Diffie-Hellman: This technique is used to create ephemeral (tem-

porary, one-time) secret keys. In this case, the Diffie–Hellman public keys are

exchanged and signed using the sender’s private RSA or DSS key. The receiver

can use the corresponding public key to verify the signature. Certificates are used

to authenticate the public keys. This would appear to be the most secure of the

three Diffie–Hellman options because it results in a temporary, authenticated key.

 ■ Anonymous Diffie–Hellman: The base Diffie–Hellman algorithm is used

with no authentication. That is, each side sends its public Diffie–Hellman pa-

rameters to the other with no authentication. This approach is vulnerable to

man-in-the-middle attacks, in which the attacker conducts anonymous Diffie–

Hellman with both parties.

Following the definition of a key exchange method is the CipherSpec, which

includes the following fields:

 ■ CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES,

3DES, DES40, or IDEA

 ■ MACAlgorithm: MD5 or SHA-1

 ■ CipherType: Stream or Block

 ■ IsExportable: True or False

 ■ HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

 ■ Key Material: A sequence of bytes that contain data used in generating the

write keys

 ■ IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC)

encryption

17.2 / TRANSPORT LAYER SECURITY 559

PHASE 2. SERVER AUTHENTICATION AND KEY EXCHANGE The server begins this

phase by sending its certificate if it needs to be authenticated; the message con-

tains one or a chain of X.509 certificates. The certificate message is required for

any agreed-on key exchange method except anonymous Diffie–Hellman. Note

that if fixed Diffie–Hellman is used, this certificate message functions as the serv-

er’s key exchange message because it contains the server’s public Diffie–Hellman

parameters.

Next, a server_key_exchange message may be sent if it is required. It is not

required in two instances: (1) The server has sent a certificate with fixed Diffie–

Hellman parameters; or (2) RSA key exchange is to be used. The server_key_

exchange message is needed for the following:

 ■ Anonymous Diffie–Hellman: The message content consists of the two global

Diffie–Hellman values (a prime number and a primitive root of that number)

plus the server’s public Diffie–Hellman key (see Figure 10.1).

 ■ Ephemeral Diffie–Hellman: The message content includes the three Diffie–

Hellman parameters provided for anonymous Diffie–Hellman plus a signature

of those parameters.

 ■ RSA key exchange (in which the server is using RSA but has a signature-only
RSA key): Accordingly, the client cannot simply send a secret key encrypted

with the server’s public key. Instead, the server must create a temporary RSA

public/private key pair and use the server_key_exchange message to send the

public key. The message content includes the two parameters of the temporary

RSA public key (exponent and modulus; see Figure 9.5) plus a signature of

those parameters.

Some further details about the signatures are warranted. As usual, a signature

is created by taking the hash of a message and encrypting it with the sender’s private

key. In this case, the hash is defined as

 hash(ClientHello.random ‘ ServerHello.random ‘ ServerParams)

So the hash covers not only the Diffie–Hellman or RSA parameters but also the

two nonces from the initial hello messages. This ensures against replay attacks and

misrepresentation. In the case of a DSS signature, the hash is performed using the

SHA-1 algorithm. In the case of an RSA signature, both an MD5 and an SHA-1

hash are calculated, and the concatenation of the two hashes (36 bytes) is encrypted

with the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie–Hellman)

can request a certificate from the client. The certificate_request message includes

two parameters: certificate_type and certificate_authorities. The certificate type in-

dicates the public-key algorithm and its use:

 ■ RSA, signature only

 ■ DSS, signature only

 ■ RSA for fixed Diffie–Hellman; in this case the signature is used only for

authentication, by sending a certificate signed with RSA

 ■ DSS for fixed Diffie–Hellman; again, used only for authentication

560 CHAPTER 17 / TRANSPORT-LEVEL SECURITY

The second parameter in the certificate_request message is a list of the distin-

guished names of acceptable certificate authorities.

The final message in phase 2, and one that is always required, is the server_
done message, which is sent by the server to indicate the end of the server hello and

associated messages. After sending this message, the server will wait for a client

response. This message has no parameters.

PHASE 3. CLIENT AUTHENTICATION AND KEY EXCHANGE Upon receipt of the

server_done message, the client should verify that the server provided a valid

certificate (if required) and check that the server_hello parameters are accept-

able. If all is satisfactory, the client sends one or more messages back to the server.

If the server has requested a certificate, the client begins this phase by send-

ing a certificate message. If no suitable certificate is available, the client sends a

no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this phase.

The content of the message depends on the type of key exchange, as follows:

 ■ RSA: The client generates a 48-byte pre-master secret and encrypts with the

public key from the server’s certificate or temporary RSA key from a server_

key_exchange message. Its use to compute a master secret is explained later.

 ■ Ephemeral or Anonymous Diffie–Hellman: The client’s public Diffie–Hellman

parameters are sent.

 ■ Fixed Diffie–Hellman: The client’s public Diffie–Hellman parameters were

sent in a certificate message, so the content of this message is null.

Finally, in this phase, the client may send a certificate_verify message to pro-

vide explicit verification of a client certificate. This message is only sent following

any client certificate that has signing capability (i.e., all certificates except those

containing fixed Diffie–Hellman parameters). This message signs a hash code based

on the preceding messages, defined as

CertificateVerify.signature.md5_hash

 MD5(handshake_messages);

Certificate.signature.sha_hash

 SHA(handshake_messages);

where handshake_messages refers to all Handshake Protocol messages sent or

received starting at client_hello but not including this message. If the user’s

private key is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private

key is RSA, it is used to encrypt the concatenation of the MD5 and SHA-1 hashes.

In either case, the purpose is to verify the client’s ownership of the private key for

the client certificate. Even if someone is misusing the client’s certificate, he or she

would be unable to send this message.

PHASE 4. FINISH Phase 4 completes the setting up of a secure connection. The client

sends a change_cipher_spec message and copies the pending CipherSpec into the

current CipherSpec. Note that this message is not considered part of the Handshake

Protocol but is sent using the Change Cipher Spec Protocol. The client then imme-

diately sends the finished message under the new algorithms, keys, and secrets.

17.2 / TRANSPORT LAYER SECURITY 561

The finished message verifies that the key exchange and authentication processes

were successful. The content of the finished message is:

PRF(master_secret, finished_label, MD5(handshake_messages) ‘ SHA@1
(handshake_messages))

where finished_label is the string “client finished” for the client and “server

finished” for the server.

In response to these two messages, the server sends its own change_ cipher_
spec message, transfers the pending to the current CipherSpec, and sends its fin-

ished message. At this point, the handshake is complete and the client and server

may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by

means of the key exchange; and (2) the generation of cryptographic parameters

from the master secret.

MASTER SECRET CREATION The shared master secret is a one-time 48-byte value

(384 bits) generated for this session by means of secure key exchange. The creation

is in two stages. First, a pre_master_secret is exchanged. Second, the master_
secret is calculated by both parties. For pre_master_secret exchange, there

are two possibilities.

 ■ RSA: A 48-byte pre_master_secret is generated by the client, encrypted with

the server’s public RSA key, and sent to the server. The server decrypts the

ciphertext using its private key to recover the pre_master_secret.

 ■ Diffie–Hellman: Both client and server generate a Diffie–Hellman public key.

After these are exchanged, each side performs the Diffie–Hellman calculation

to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret =
 PRF(pre_master_secret, “master secret”, ClientHello.random ‘ ServerHello

.random)

where ClientHello.random and ServerHello.random are the two nonce

values exchanged in the initial hello messages.

The algorithm is performed until 48 bytes of pseudorandom output are pro-

duced. The calculation of the key block material (MAC secret keys, session encryp-

tion keys, and IVs) is defined as

key_block =
 PRF(SecurityParameters.master_secret, “key expansion”,

SecurityParameters.server_random ‘ SecurityParameters.client_random)

until enough output has been generated.

562 CHAPTER 17 / TRANSPORT-LEVEL SECURITY

GENERATION OF CRYPTOGRAPHIC PARAMETERS CipherSpecs require a client write

MAC secret, a server write MAC secret, a client write key, a server write key, a

client write IV, and a server write IV, which are generated from the master secret

in that order. These parameters are generated from the master secret by hashing

the master secret into a sequence of secure bytes of sufficient length for all needed

parameters.

The generation of the key material from the master secret uses the same for-

mat for generation of the master secret from the pre-master secret as

key_block = MD5(master_secret ‘ SHA(=A> ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘

MD5(master_secret ‘ SHA(=BB> ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘

MD5(master_secret ‘ SHA(=CCC> ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘c

until enough output has been generated. The result of this algorithmic structure is a

pseudorandom function. We can view the master_secret as the pseudorandom

seed value to the function. The client and server random numbers can be viewed as

salt values to complicate cryptanalysis (see Chapter 21 for a discussion of the use of

salt values).

PSEUDORANDOM FUNCTION TLS makes use of a pseudorandom function referred

to as PRF to expand secrets into blocks of data for purposes of key generation or

validation. The objective is to make use of a relatively small, shared secret value but

to generate longer blocks of data in a way that is secure from the kinds of attacks

made on hash functions and MACs. The PRF is based on the data expansion func-

tion (Figure 17.7) given as

P_hash(secret, seed) = HMAC_hash(secret, A(1) ‘ seed) ‘
 HMAC_hash(secret, A(2) ‘ seed) ‘
 HMAC_hash(secret, A(3) ‘ seed) ‘

where A() is defined as

A(0) = seed

A(i) = HMAC_hash(secret, A(i - 1))

The data expansion function makes use of the HMAC algorithm with either MD5

or SHA-1 as the underlying hash function. As can be seen, P_hash can be iterated

as many times as necessary to produce the required quantity of data. For example, if

P_SHA256 was used to generate 80 bytes of data, it would have to be iterated three

times (through A(3)), producing 96 bytes of data of which the last 16 would be dis-

carded. In this case, P_MD5 would have to be iterated four times, producing exactly

64 bytes of data. Note that each iteration involves two executions of HMAC, each

of which in turn involves two executions of the underlying hash algorithm.

17.2 / TRANSPORT LAYER SECURITY 563

To make PRF as secure as possible, it uses two hash algorithms in a way that

should guarantee its security if either algorithm remains secure. PRF is defined as

 PRF(secret, label, seed) = P_6hash7(secret, label ‘ seed)

PRF takes as input a secret value, an identifying label, and a seed value and

produces an output of arbitrary length.

Heartbeat Protocol

In the context of computer networks, a heartbeat is a periodic signal generated by

hardware or software to indicate normal operation or to synchronize other parts of

a system. A heartbeat protocol is typically used to monitor the availability of a pro-

tocol entity. In the specific case of TLS, a Heartbeat protocol was defined in 2012 in

RFC 6250 (Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension).

Figure 17.7 TLS Function P_hash(secret, seed)

Secret

Seed

Seed

A(1)
HMAC

Secret

Secret

Length = hash size

Secret

Seed

A(2)
HMAC

HMAC Secret

Seed

A(3)
HMAC

HMAC

Secret HMAC

	Ch5-
	ch5

